Skip to main content

Column-Store index in SQL Server

Column-Store Indexes
Column-Store index is designed for improving query performance which is used for heavy amount of data like data warehouse fact tables. This type of index stores the index data in column based rather than row based. This index is introduced in version SQL server 2012; basically this is column based non-clustered index.

Why should we use Column-Store Index
Column-Store index provides a very high level of compression, typically by 10 times, to significantly reduce your data warehouse storage cost. For analytics, a column-store index offers an order of magnitude better performance than a B-Tree index.
Columns store values from the same domain and commonly have similar values, which result in high compression rates. I/O bottlenecks in your system are minimized or eliminated, and memory footprint is reduced significantly.
High compression rates improve query performance by using a smaller in-memory footprint. In turn, query performance can improve because SQL Server can perform more query and data operations in memory.
Batch execution improves query performance, typically by two to four times, by processing multiple rows together.
Queries often select only a few columns from a table, which reduces total I/O from the physical media.

Note:
1-    Use a clustered column-store index to store fact tables and large dimension tables for data warehousing workloads. This method improves query performance and data compression by up to 10 times.
2-    Use a non-clustered column-store index to perform analysis in real time on an OLTP workload.

How to create a column-store index
Using the following script you can create the column-store index in SQL Server.


--to create column-store index
CREATE COLUMNSTORE INDEX IX_OrderDetail_ProductIDOrderQty_ColumnStore
ON Sales.OrderDetail (ProductId,OrderQty);


Source of content from Microsoft: column-store index


Popular posts from this blog

What is difference between UNION and UNION ALL in SQL Server

We use UNION and UNION ALL operator to combine multiple results set into one result set.
UNION operator is used to combining multiple results set into one result set but removes any duplicate rows. Basically, UNION is used to performing a DISTINCT operation across all columns in the result set. UNION operator has the extra overhead of removing duplicate rows and sorting result.
UNION ALL operator use to combine multiple results set into one result set but it does not remove any duplicate result. Actually, this does not remove duplicate rows so it is faster than the UNION operator. If you want to combine multiple results and without duplicate records then use UNION otherwise UNION ALL is better.
Following some rules for using UNION/UNION ALL operator
1.The number of the column should be the same in the query's when you want to combine them. 2.The column should be of the same data type. 3.ORDER BY clause can be applied to the overall result set not within each result set.
4.Column name of …

Add day to ISODate in MongoDB

We can use $add operator to add days in ISODate in mongodb, $add is the Arithmetic Aggregation Operator which adds number and date in mongodb.
Syntax:

{ $add: [ <expression1>, <expression2>, ... ] }

Note:  If one of the argument is date $add operator treats to other arguments as milliseconds to add to the date.
Example: Suppose we have a Test collection as below.

{"Title" : "Add day to ISODate in MongoBD","CreatedDate" : ISODate("2016-07-07T08:00:00.000Z")}

Query to add 2 days in CreatedDate

db.Test.aggregate([      { $project: { Title: 1, AddedDate: { $add: [ "$CreatedDate", 2*24*60*60000 ] } } }    ])

Result:

{ "_id" : ObjectId("579a1567ac1b3f3732483de0"), "Title" : "Add day to ISODate in MongoBD", "AddedDate" : ISODate("2016-07-09T08:00:00.000Z") }

Note: As mentioned in above note we have to convert days in millisecond because $add operator treat to other arg…

Merge and Merge join transformation in SSIS

MERGE TRANSFORMATION
Using Merge Transformation we can combine two sorted data-set into single data-set basically Merge Transformation used to combines rows from two sorted data flows into one sorted data flow. Following tasks you may perform using Merge Transformation: 1.Suppose we have a scenario like, we need to merge data from a database table and excel means we want to merge data from two different data sources. For such type of scenario, you can use Merge Transformation. 2.If we want to merge data from two same structured tables but exists two different servers. 3.Sometimes we get an error due to data in a row, after correcting errors in the data we can re-merge rows easily. See below explanations may help you to understand Merge Transformation: I do evaluate here, you already know about the data source, data conversion, data flow, task flow, control flow etc. Note:Before Merge transformation, we need to sort the data using Sort Transformation. After sorting data add data path to Merge…