Skip to main content

MongoDB - Sharding

Sharding


Sharding is responsible to storing data records across multiple machines. As per demand to manage large amount of data, a single machine is not sufficient to store data nor provide an acceptable medium to read and write data. To resolve this problem MongoDB provide a process called Sharding. Sharding solve the problem with horizontal scaling. Through sahrding, you may add more machines to support data growth and demands of read and write operations.

Why Sharding?

  • In replication all writes go to master node
  • Latency sensitive queries still go to master
  • Single replica set has limitation of 12 nodes
  • Memory can't be large enough when active dataset is big
  • Local Disk is not big enough
  • Vertical scaling is too expensive

Sharding in MongoDB

Below given diagram shows the sharding in MongoDB using sharded cluster.



Shards: It is used to store data and provide high availability and data consistency , shard is a separate replica in production environment.

Config Servers: Config servers store the cluster's metadata. This data contains a mapping of the cluster's data set to the shards. The query router uses this metadata to target operations to specific shards. In production environment sharded clusters have exactly 3 config servers.

Query Routers: Query Routers are basically mongos instances, interface with client applications and direct operations to the appropriate shard. The query router processes and targets operations to shards and then returns results to the clients. A sharded cluster can contain more than one query router to divide the client request load. A client sends requests to one query router. Generally a sharded cluster have many query routers.

Popular posts from this blog

Merge and Merge join transformation in SSIS

MERGE TRANSFORMATION
Using Merge Transformation we can combine two sorted data-set into single data-set basically Merge Transformation used to combines rows from two sorted data flows into one sorted data flow. Following tasks you may perform using Merge Transformation: 1.Suppose we have a scenario like, we need to merge data from a database table and excel means we want to merge data from two different data sources. For such type of scenario, you can use Merge Transformation. 2.If we want to merge data from two same structured tables but exists two different servers. 3.Sometimes we get an error due to data in a row, after correcting errors in the data we can re-merge rows easily. See below explanations may help you to understand Merge Transformation: I do evaluate here, you already know about the data source, data conversion, data flow, task flow, control flow etc. Note:Before Merge transformation, we need to sort the data using Sort Transformation. After sorting data add data path to Merge…

Add day to ISODate in MongoDB

We can use $add operator to add days in ISODate in mongodb, $add is the Arithmetic Aggregation Operator which adds number and date in mongodb.
Syntax:

{ $add: [ <expression1>, <expression2>, ... ] }

Note:  If one of the argument is date $add operator treats to other arguments as milliseconds to add to the date.
Example: Suppose we have a Test collection as below.

{"Title" : "Add day to ISODate in MongoBD","CreatedDate" : ISODate("2016-07-07T08:00:00.000Z")}

Query to add 2 days in CreatedDate

db.Test.aggregate([      { $project: { Title: 1, AddedDate: { $add: [ "$CreatedDate", 2*24*60*60000 ] } } }    ])

Result:

{ "_id" : ObjectId("579a1567ac1b3f3732483de0"), "Title" : "Add day to ISODate in MongoBD", "AddedDate" : ISODate("2016-07-09T08:00:00.000Z") }

Note: As mentioned in above note we have to convert days in millisecond because $add operator treat to other arg…

What is difference between UNION and UNION ALL in SQL Server

We use UNION and UNION ALL operator to combine multiple results set into one result set.
UNION operator is used to combining multiple results set into one result set but removes any duplicate rows. Basically, UNION is used to performing a DISTINCT operation across all columns in the result set. UNION operator has the extra overhead of removing duplicate rows and sorting result.
UNION ALL operator use to combine multiple results set into one result set but it does not remove any duplicate result. Actually, this does not remove duplicate rows so it is faster than the UNION operator. If you want to combine multiple results and without duplicate records then use UNION otherwise UNION ALL is better.
Following some rules for using UNION/UNION ALL operator
1.The number of the column should be the same in the query's when you want to combine them. 2.The column should be of the same data type. 3.ORDER BY clause can be applied to the overall result set not within each result set.
4.Column name of …